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Abstract. We have obtained a simple analytic pair potential and volume potential for 
simulations of simple metals in which the density dependence of the parameters is given 
explicitly. The potentials are based on a first-principles non-local pseudopotential theory 
with a correction term in the volume potential to allow for the effects of the density 
dependence of terms in the total energy beyond second order in perturbation theory. This 
correction term gives the pressure required to obtain the measured equilibrium lattice 
constant. In this paper we present a potential for Li and show that it gives the FCC structure 
at low temperatures, and gives good agreement with measured phonon dispersion curves 
and elastic constants. 

1. Introduction 

This paper derives a simple analytic pair potential, cp, and a volume potential, Go, for 
use in simulations of simple metals. These potentials are derived from a non-local 
pseudopotential theory presented in the preceding paper (Walker and Taylor 1990), 
hereafter referred to as paper I, based on the theory of Dagens et a1 (DRT) (Rasolt and 
Taylor 1975, Dagens et a1 1975). The motivation for creating such potentials is to provide 
a potential based on first-principles theory that is simple enough to be used in constant- 
pressure simulations where the mean density, and hence the effective interaction, is 
allowed to vary, and also in simulations of defective systems where the density may vary 
locally. An important reason for using the Dmpotentials is that they have given excellent 
results for defects and disorder in metals such as A1 (Jacucci et a1 1981). Such first- 
principles potentials have the correct functional form for the long-range Friedel oscil- 
lations, which appear to be critical in obtaining the correct atomic structure at the grain 
boundaries between bicrystals (V Vitek, private communication). The advantage that 
these potentials have over the embedded atom method (EAM) is that such features as 
the Friedel oscillations are automatically present in these potentials; in the EAM they 
would have to be specially inserted. 

This point is emphasized when the variable cell molecular dynamics, devised by 
Parrinello and Rahman (1980), is applied to simulate metals under a constant external 
pressure. Here the cell’s shape and size and hence the mean density of the system are 
determined by the balance between the externally applied stress and the internal stress 
generated by the ions and conduction electrons. The latter arises both from the variation 
with density of the volume and structural terms in the energy and from the motions of 
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the ions (Walker et af  1986). Munro and Mountain (1983) and Walker et af (1986) 
simulated the phase diagram of Li with the variable cell technique, employing potentials 
based on pseudopotential theory. The first two authors, however, did not include the 
pressure term arising from the volume term. 

In a recent application of variable cell molecular dynamics, Cagin and Ray (1988) 
found that the density dependence of the metallic potentials is important in the cal- 
culation of elastic constants. Furthermore, Rosenfeld and Stott (1987) were able to show 
that the discrepancy between elastic constants from the long-wavelength limit of the 
acoustic phonons and from homogeneous deformation ‘compressibility problem’ arises 
from the sensitivity of the pair potentials to inhomogeneities in the electron density 
arising from the phonons. 

The density dependence of the interactions of metals is also important for their 
disorder and defect properties, e.g. the vacancy formation energy (Jacucci and Taylor 
1979, Jacucci et a1 1981) and grain boundary structures (Sutton 1984). The interatomic 
potentials are sensitive to the local depletion of charge near the defect as there are 
changes in the density of electrons screening the ions. Finnis and Sachdev (1976) tried 
to predict corrections to the vacancy formation energy by letting the density refer to 
the local atomic environment but found the corrections to be too small to explain 
discrepancies between their theory, based on a local Ashcroft pseudopotential, and 
experiment. 

We have adapted the approach of Pettifor and Ward (1984) to fit the effective pair 
potential, Q,DRT, of DRT to a sum of four exponentially decaying oscillatory terms. This 
functional form was found to be the simplest way of reproducing q sufficiently well that, 
in common with DRT’S potential, the FCC structure is predicted to be lower in energy for 
Li than the BCC at low temperatures. (Note that we have not performed calculations for 
the 9R structure, the observed (Overhauser et a1 1984) low-temperature phase of Li.) 
This is a stringent test of our fitting procedure, given that the difference between the 
energies for different structures is of the order of 0.003 eV/ion and so a few per cent of 
the total energy. We have fitted each parameter in the potential to a quadratic in the 
density, a procedure that gives fits accurate to 0.1% over a range of densities from 0.9 
to 1.1 times the standard density in the calculations presented here. 

A quadratic fit for the density dependence of Do has been found from the formalism 
presented in paper I but with the approximation that the energy-wavenumber charac- 
teristic F(q)  is represented by a Pad6 approximant, the same approximation used to 
obtain a Pettifor-Ward form for q. The quadratic includes an extra term, UHo, whose 
origin is discussed in paper I. This term contains the only adjustable parameter in our 
theory due to the complexity of the first-principles calculations required to ascertain its 
exact magnitude. The adjustable parameter is fixed such that U,, gives the correct 
equilibrium volume. 

In this paper we present results for Li, although similar potentials will be produced 
for the other simple metals in forthcoming publications. Section 2 describes how qDRT 
is fitted to a Pettifor-Ward-like potential q and section 3 shows how an approximation 
to 0, is found and gives tables of the coefficients for the quadratics used to fit the density 
dependence of U. and the parameterrs in q. Results are presented in section 4, and 
section 5 concludes the paper. 

2. Effective pair potential 

In paper I (equation (2.24)) it is shown that Q, depends on F ( q )  as follows: 
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If a Pade approximant, i.e. the ratio of two polynomials, A(q2)  and B(q2) ,  where B(q2)  
is of order II, is used for F(q) .  then 

where 

/ 

and i and j run over all the roots of B(qz).  Various values of n were tried, and the 
minimum value found to be 8 to give a pair potential that produces a lower energy for 
FCC than BCC for Li at zero temperature and at a standard density derived from a lattice 
constant of 3.478 A for a BCC lattice (Beg and Nielsen 1976). There were three complex 
conjugate pairs of roots and two real roots at all the densities (i.e. 0 . 9 ~ ~  to 1 . 1 ~ ~  where 
po is the equilibrium density) for which F(q)  was fitted. The amplitude A for the second 
real root was found to be less than 0.001% at all densities considered and is therefore 
ignored. 

y ( r )  = [Z2e2/ (4neGr>] (E A ,  cos(k,r + E,) exp(-x,r) + A 4  exp(-rc,r)) 

where 

Thus from equation (2 .  l), 
3 

(2.4) 
r=l  

q ,  = k ,  + iK, q4 = k4 (2.5) 

A ,  = 2dr A 4  = d4. (2.6) 

Here i runs over the members of the complex conjugate pairs for which K, is positive. 
Pettifor and Ward (1984) obtained the same form for q for a local pseudopotential 

by approximating the Lindhard functionfG(q) by a ratio of two polynomials in q2 which 
reproduce fo (q)  for low and high values of q. Our approach is similar except that F(q)  
rather thanfo(q) is replaced by a PadC. 

To fit F(q)  to a Pade we used the expansion of F(q)  for low q given in appendix 1 of 
paper I. Since appendix 1 of paper I also shows that, at large q ,  

[1 - F(q)l/q2 = 1/q2 + 0 Q / q 6 )  (2.7) 
A(q2)  has to be of order n - 1. The first three terms of A(q2)  are determined from the 
requirement that the Pade reproduces the low-q expansion, equation (Al .  18-20) of 
paper I to order q", and the two highest-order coefficients of A(q2)  are set equal to the 
two highest-order coefficients of B(q2).  The remaining terms were obtained by a least- 
squares fit of (2 .3)  to F ( q )  calculated from the theory given in paper I at 51 points. In 
these calculations the approximation given in equation (A2.4)  of paper I for the local 
field, yLF(0), was used when calculating the susceptibility. As is clear from figure 3 
and equation (A2.5) of paper I, which compares the approximate expression for the 
correlation factor F, with the expression derived by Vosko et a1 (1980), this approxi- 
mation will have a negligible effect on our results. 
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To find the density dependence of the parameters k,, K ~ ,  Ai and ai for i = 1 , 2 , 3 , 4 ,  
these parameters were calculated for 11 values of the density p in units of p,, i.e. p = 
0.90, 0.92, . . ., l . lpo,  and fitted to a quadratic in p/po  with coefficients Q,, Q,, Q2 
defined from 

Q ( P / P o )  = Q o  + @/PO - l ) [ Q i  + Q ~ ( P / P o  + 1>1. (2.8) 

A least-squares routine was used, which gave a deviation of typically 0.01% of the fitted 
values, the maximum deviation being 0.7% for a few values of Q2.  

3. Total theory 

The density dependence of the total energy, Utot, is required for the pressure generated 
by the conduction electrons. In this section we show how we have calculated and fitted 
U,,  the volume energy corrected to take account of the core-conduction electron 
interaction UHO, where 

(equation (4.1) of paper I) ,  and 

(equation (2.23) of paper I) where Nis the number of ions, Rm is the position of the mth 
ion and the prime on the summation excludes m = m'. 

The volume term U. was calculated using the same programs as those used to 
generate U ,  in paper I and fitted to a quadratic using exactly the same procedure (and 
the same densities) as described in section 2 for the potential parameters. Our motivation 
for doing this is that the static bulk modulus gives reasonable agreement with experiment 
(see section 4 below). As in paper I it was necessary to add a term UHO to correct for 
higher-order terms in the total energy neglected in the pseudopotential theory given in 
paper I. U,, is fixed to give zero pressure at the observed low-temperature value for the 
lattice constant. Here, we have simply used the fact that UHO varies linearly with 
(p /po  - 1) and so written 

UHO = uhO(p/pO - (3.3) 

where the derivative of UHO with respect to p/po ,  U h o ,  was fitted to give zero pressure 
at the observed equilibrium density. To find Uho,  we used the quadratic fit to U. 
mentioned above to obtain the derivative of U. with respect to p/po. From equation 
(3.2), the derivative of UII with respect to p/po  was found from 

U;I = 0.5 E Nn[ex~(-~Rn)/RnlU{Aj -Ai[KIRn - ( K R ~  + 1 ) / ( 3 ~ / ~ 0 ) 1 1  
n.I 

X cos(kjRn + a;) - [kl R, + CUI - Rnkj/(3p/p,)]Ai 

x sin(kiRn + ai)] (3.4) 

in terms of the derivatives of the potential parameters (denoted by primes) obtained 
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Table 1. Coefficients of quadratics used to fit potential parameters. 
~~ ~~ ~ ~ 

Parameter Q, Q I  Q 2  

fi,, -7.452 68800 -0.706 797 58 0.345 35241 

k ,  - 1.91491057 -0.627818 34 0.11225943 
k2 - 1.190043 37 -0.008 481 64 -0.017 599 72 
k3 -2.13814916 -0.42632610 -0.101 66748 

K l  1.12697989 -1.601 16365 0.78003658 
K2 1.93711059 -1 18303429 0.734 407 69 
K 3  0.29580147 -2.13994944 0.943 502 95 
K4 2.869 15466 -5.67344985 3.12084931 

A ,  0.471 12040 -2.80902202 1 29827102 
A2 2.442 131 09 -5.96463205 3.247 168 54 
A3 0.00829335 -0.12953926 0.06241810 
A4 1.02188971 2.94806413 - 1.390995 79 

f f 1  -2.86854363 0 77039869 -0.186911 58 
f f 2  1.39223261 2.03887398 -0.91097913 
f f 3  -1.81228897 -0.101 10970 0.36907974 

from the quadratic fits, and the positions and coordination number of the nth nearest- 
neighbour shell R, and N ,  respectively. The quadratic fit for f l 0 ,  i.e. the volume term 
corrected for the core-conduction electron interactions, was then found from 

U ,  = U0 + UHO.  (3.5) 

4. Results 

Table 1 gives the coefficients for the quadratic fits for 0, and the potential parameters 
using the notation of equation (2.8). These coefficients can be supplied on request as a 
data file from either of the authors of this paper. They were calculated assuming a value 
of 4.382 A in the FCC structure, equivalent to a BCC lattice constant of 3.478 A, and the 
pseudopotential parameter values of DRT. 

In figure 1 we have plotted q ( r )  at p/po  = 1.0 and 1.5, and compared our potential 
with the potential of DRT. The figure shows that our fitted potential is indistinguishable 
from DRT’S potential in both cases. The closeness of this fit is essential to obtain the 
correct low-temperature structure. 

We have calculated U,, as a function of the reduced density for the low-temperature 
FCC and BCC structures of Li with the fitted potential and presented our results in figure 
2. We have not performed a calculation for the 9R structure, the low-temperature phase 
of Li (Overhauser 1984). Figure 2 shows that, while we have been able to produce a 
potential that gives FCC in preference to BCC at pressures up to about 15 GPa (from the 
pressure-density curve presented in figure 4), our potential favours the BCC structure at 
higher pressures. This last point disagrees with Olinger and Shaner (1983). On the other 
hand, the DRT potential gives FCC as the structure with the lower energy at all densities 
in the range shown in the figure. This discrepancy indicates that the fit to DRT’S potential 
may not be sufficiently accurate to reproduce the correct structure at very high pressures. 
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Figure 2. The structure-dependent con- 
tribution to the total energy, U,,, as a func- 
tion of the density p in units of the 
equilibrium density p o  for the low-tem- 
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Figure 1. The pair potential and the pair potential pDRT of DRT (in eV) as a function of 
position r (in A) for the densities p/p0 = 1 (broken curve and full curve respectively) and 
p / p o  = 1.5 (chain curve and dotted curve respectively). 

However, it should be noted that the difference in energy is very small, e.g. 0.003 eV/ 
ion at p/po  = 1. Hence, in consideration of this and the fact that we get good agreement 
between the two potentials over a wide range of pressure, we feel that we do have a very 
accurate fitting procedure. 

Our concern in the foregoing was to provide a comparison between our potential 
andd the DRT version. We recognize that the 9R structure is observed experimentally at 
low temperatures and that the FCC structure seems to exist in Li for only a narrow 
temperature range at moderate pressures (Smith et a1 1990). We also note the comment 
of Smith et a1 (1990) that a search for the most stable structure should include the effects 
of vibrational entropy even at low temperatures, a question that is beyond the scope of 
this paper. Hence we have not at this stage concerned ourselves with identifying the 
predicted most stable structure for either our potential or that of DRT. Since 9R is similar 
to FCC, we have no reason to believe that either potential would give poor results. 
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higher-order terms, U,,,, for FCC as a function of 
p/po:  results for fited potential (broken curve), 
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curve). The energies are given in eV.  

Figure 4. The pressure P calculated for FCC as a 
function of p / p o  (full curve), compared with the 
room-temperature experimental measurements 
of Olinger and Shaner (1983) (triangles). The 
units of P are GPa.  

In figure 3 we have compared the total energy for an FCC structure as a function of 
p/po  for the fitted potential (U,,,) and for the formalism presented in paper I ( 
The difference between the two energies is largely due to the structural contribution U,, 
as the volume term U ,  for the fitted potential was obtained by fitting to the energy 
derived from the formalism in paper I. This figure shows just how sensitive U,, is to 
small differences in the pair potential, but the agreement is still within 0.02 eV up to 
p/po = 1.8. 

Figure 4 shows how the pressure depends on the density assuming a low-temperature 
FCC structure and compares our predictions with the room-temperature results of Olinger 
and Shaner (1983). Whilst Olinger and Shaner (1983) observe an FCC-BCC phase tran- 
sition at a pressure of 7.5 GPa, this does not affect the density. The fact that we get such 
good agreement with Olinger and Shaner’s results is largely a consequence of obtaining 
reasonable agreement with the experimental value for the predicted static bulk modulus 
at p/po = 1 (see table 2 and the discussion of the results in it below). 

The dispersion curves for the fitted potential are shown in figure 5 where they are 
compared with experimental values. We note that the agreement is as good for the DRT 
potential, but that it is not perfect, and would argue that the discrepancy has the origin 
discussed in some detail in DRT. Briefly, the discrepancy may arise from the very non- 
linear response due to the fact that the p components of the conduction electrons see 
the full ionic potential; from the possibility that three- and four-body forces play a 
significant role in the lattice dynamics; and from anharmonic effects due to Li being a 
light ion. The importance of anharmonic effects in Li has been noted by Taole et a1 
(1978), who found significant shifts downward even at a temperature of 110 K. Such 
effects would be picked up when using these potentials in a molecular dynamics simu- 
lation. 

In table 2 we have shown how the elastic constants from the phonon dispersion 
relations and the dynamic bulk modulus compare for our potential, the DRT potential 
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Figure 5. The predicted phonon dispersion curves from the fitted potential for BCC Li. The 
frequencies are in units of loL3 Hz and the wavevector in units of 2n/a, where a is the lattice 
constant. The full curves correspond to the longitudinal modes and the broken curves to 
transverse modes (in the (01 1) direction the broken curve corresponds to the TI mode and 
the chain curve to the T2 mode). The points indicate the experimental results of Smith er a1 
(1968): (+) for the longitudinal branches and (B) for the transverse branches (in the (01 1) 
direction ( x )  corresponds to the TI mode and (0) to the T2 mode). 

Table 2. Elastic constants, bulk moduli and vacancy formation energy (E,,,), a comparison 
between results for the fitted potential, the formalism in paper I and experiment. Results 
are presented for BCC and FCC structures as indicated. The elastic constants are obtained 
from the q -+ 0 limit of the phonon dispersion relations. The dynamic bulk mopuli, Bdynrmlc, 
are equal to (Cll + 2C,,)/3 and the static bulk moduli, B,,,,,,, are equal to Bd2Ut,,/dB2. The 
calculated E,,, are for an unrelaxed system. Note that at zero temperature the formation 
enthalpy at constant pressure, the measured E,,,, isequal to the formation energyat constant 
volume (Jacucci and Taylor 1979). 

Fitted potential Formalism in paper I Experiment 

Cll (BCC) 16.2 18.0 18.0" 
ClZ (GPa) (BCC) 12.1 12.2 14.0" 

Bdynam,c  (BCC) 13.5 14.1 15.3" 
BSI.,,,, (GPa) ( F a  10.9 10.5 13.1b 
BSI,,,, (GPa) (BCC) 10.5 11 .6b 
E",, ( e v )  (BCC) 0.52 0.49 

a Beg and Nielsen (1976) at a temperature of 110 K.  

C, (GPa) (BCC) 10.4 11.1 12.0" 

Olinger and Shaner (1983) at a temperature of 296 K.  

and experiment. It should be noted that there is some uncertainty in the experimental 
value for the dynamic bulk modulus; the value quoted in the table comes from the elastic 
constants published by Beg and Nielsen (1976), who obtained their values from the low- 
energy phonons. These authors point out that their values are up to 20% higher than 
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the values obtained by a sound echo technique (Nash and Smith 1959). The discrepancy 
in the elastic constants from our potential and from the DRT potential is likely to be due 
to the damping out of the oscillations in the potential at long distances. This damping 
gives rise to errors in quantities like [ e  - (q  + G)/lq + G/]’F(lq + GI) - (e  * G/G)2F(G) ,  
where G is a reciprocal lattice vector and e the polarization vector, which are evaluated 
when solving for the phonon frequencies. Anharmonic effects, discussed above, are 
likely to account for a large part of the disagreement with experiment. 

Table 2 also shows the static bulk moduli BsIatic from the total energy obtained from 
using the fitted potential, the formalism in paper I and experiment. To obtain Bstatic from 
the formalism in paper I, the total energy was calculated at the same p/po  values used 
for fitting the potential parameters (described in section 2 above) and these values for 
the total energy were fitted to a quadratic in p/po. We found that Bstatic from the 
formalism in paper I is very sensitive to the values of p/po  used to fit the total energy, so 
that the result quoted in the table should only be regarded as giving an estimate. Given 
the difficulty of predicting an accurate value of Bstatic, the agreement with experiment is 
good. As B,,,,, is not sensitive to UHo,  it is a useful test of the quality of the first-principles 
theory used. The origin of the difference betwen the dynamic and static bulk moduli has 
been discussed by Rosenfeld and Stott (1987). It is interesting to note that there is a 
quantitative difference here. 

Finally, the unrelaxed vacancy formation energy reported in table 2 is a measure of 
the strength of the potential and should be roughly 10% greater than the experimental 
value. There is excellent agreement between the two potentials in this case, which is 
likely to be useful when we simulate defective metals using the fitted potential. 

5. Conclusions 

We have developed a very accurate fit to the first-principles potential of DRT and the 
volume energy of paper I ,  which contains the density dependence explicitly and is easy 
to use in a Monte Carlo or molecular dynamics simulation. Our potential predicts the 
FCC structure for Li up to pressures of 15 GPa. Our fit to the total energy produces bulk 
moduli, a pressure-density curve and phonon dispersion relations in good agreement 
with experiment. As our approach to obtaining an analytic fit to the pair potential 
requires only a means of calculating the energy-wavenumber characteristic, it could be 
used on any formalism where this quantity is derived. 

Whilst results here are presented only for Li, work is in progress to generate potentials 
for other simple metals, which will be presented in future publications along with tests 
of the potential in molecular dynamics simulations. 
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